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Huybers' Discrete Model

Vi = Vi_1+n:  andif Vi > T; terminate
T: = at+b—cb),

Upon termination, linearly reset V to 0 over 10 Ka

V . ice volume

T : deglaciation threshold
0’ : scaled obliquity

n : ice volume growth rate
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A deterministic run of the model

Huybers, P. Glacial variability over the last two million years: an extended
depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression.

Quaternary Science Reviews. 2007.
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Discrete model with combined forcing

Huybers, P. Combined obliquity and precession pacing of late Pleistocene

deglaciations. Nature. 2011.
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Huybers, P. and Wunsch, C. Obliquity pacing of the late Pleistocene glacial

terminations. Nature. 2005.

6/29



|dealized Model

Discrete model:

Vt,‘ = Vtifl + nt,'At and if Vti > Tt,- terminate
Ty, = atj+ b+ csin(2nt;)
Ay = tj—tia

Continuous model: let A; — 0.

Let V4, (t) be the volume with initial condition V4, (to) = 0.
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Numerical Simulations
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Numerical Simulations

1.2
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Another model: Neuron Potentials

— =5
v(tt) = 0ifv(t) =T,
Tt = 6o+ Asin(wt + ¢)

v . electric potential
T : firing threshold

J. P. Keener, F. C. Hoppensteadt, and J. Rinzel. Integrate-and-fire models of nerve
membrane response to oscillatory input. SIAM Journal on Applied Mathematics,
41:503, 1981.
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Reduction to a Periodic Map

Suppose the threshold T is periodic: T(x +1) = T(x).

Let g : R — R be the section map sending a termination time t to
the next termination time.

g(t) = min{t' >t : V(') = 0}

Then g is also periodic: g(t + 1) = g(t).
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Reduction to a Periodic Map

, continuous, or discontinuous.
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The map g can be smooth
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Circle Maps

A function f : St — St is a circle map.

Let 7 : R — S! be defined as
7T(X) — e27rix
A lift of a circle map is a map F : R — R such that

moF=fom
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Circle Maps

e There are infinitely many lifts of any circle map f.
e If f is continuous, any two continuous lifts differ by an integer.

e We say a continuous circle map f is orientation preserving if a
lift F has the property F(x) < F(y) if x < y.
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Rotation Number

Choose a basepoint x € St and x’ € R with 7(x') = x.

Then for f with lift F define

o(x, F) = p(x0, F) = lim L) =X

n—oo n
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Rotation Number

Choose a basepoint x € St and x’ € R with 7(x') = x.
Then for f with lift F define

o(x, F) = p(x0, F) = lim L) =X

n—oo n

" Average" amount of rotation from one iteration of f
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Rotation Number

Define the rotation set

p(F) = {p(x,f) : x € S'}
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Rotation Number

Define the rotation set

p(f) = {p(x,f) : x €51}

e If f is a diffeomorphism and orientation-preserving, p(f) exists
uniquely. (Poincaré)
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Rotation Number

Define the rotation set

p(f) = {p(x,f) : x €51}

e If f is a diffeomorphism and orientation-preserving, p(f) exists
uniquely. (Poincaré)

e If f is degree one and continuous, p(f) is an interval
[o1(F), p2(£)]. (Ito, 1981)
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Average Displacement Set

Fn

—id F"—id
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KalF) = n n

(0,1])

K(F) = (1) Kn(F)
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Rotation Number

e For a degree one, continuous circle map f with lift F,

p/q € p(f) < There exists point x € R with F9(x) =x+p
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Rotation Number

e For a degree one, continuous circle map f with lift F,

p/q € p(f) < There exists point x € R with F9(x) =x+p

18/29



Standard family of circle maps

f(x)=x+b+ ; sin(2rx) mod 1
T

a
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Standard family of circle maps
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Discontinuous Rotations

What holds true for discontinuous rotations?
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Discontinuous Rotations

What holds true for discontinuous rotations?

e Existence and uniqueness if f is orientation preserving.

(Brette, 2003; Kozaykin, 2005)
e If there exists point z with f9(z) =z, p/q € p(f)
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Discontinuous Rotations

e p/q € p(f) does not imply the existence of a periodic point:
f(x)=(1/2)x+1/2
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Discontinuous Rotations

e p/q € p(f) does not imply the existence of a periodic point:

F(x) = (1/2)x +1/2
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e BUT, if p/q € p(f), orbits will tend towards a (possibly
missing) periodic orbit.
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Relations on S!

A relation on S! is a subset of St x S*.
The analogue of an iteration is an orbit of a relation f:
{..x_1, X0, X1, X2, ... } such that (x;, xi+1) € f.

Rotation set is:

p(f) =p(F)={ lim n — 0 , (x0,x1, X2, ...) is an orbit of F }

n—o0
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Closed, Connected Relations

What holds true for rotation numbers of closed, connected
relations?
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What holds true for rotation numbers of closed, connected
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e Connected relations might not stay connected upon iteration!
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Closed, Connected Relations

e The rotation set is not always a closed interval.
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Closed, Connected Relations

e The rotation set is not always a closed interval.
o Consider a relation consisting of two lines:
X+ «a, and 1 — ax.
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Closed, Connected Relations

There is one orbit starting at 0 that moves up by 1 every time,
with rotation number 1.

All other orbits move at most 1 + « after 2 moves, with rotation
number in [a, (1 + «)/2].
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Closed, Connected Relations

Can these two types of orbits mix?
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Closed, Connected Relations

Can these two types of orbits mix?

mic

n — a(mla)

m — a(ma) + ma

np — a(n — a(ma) + mea)

m — a(n —a(ma) + ma)... = N?

This is a polynomial in « with integer coefficients. If « is
transcendental, the equation can not be satisfied.
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What do we know?

Orientation-preserving = unique rotation number

Rational rotation number < periodic point
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Conjectures

Conjecture: If connectedness is preserved, the rotation set is a
closed interval, and p(F) = K(F).

e (need to modify Ito’s proof that rotation sets are closed)
Conjecture: p(F) = K(F)

Conjecture: rotation set for backwards (inverse) iterations will be
the same.
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