Periodic Thresholds and Rotations of Relations

Jonathan Hahn

February 2015

Huybers' Discrete Model

$$V_t = V_{t-1} + \eta_t$$
 and if $V_t \ge T_t$ terminate
 $T_t = at + b - c\theta'_t$

Upon termination, linearly reset V to 0 over 10 Ka

- V : ice volume
- T : deglaciation threshold
- θ' : scaled obliquity
- $\eta~$: ice volume growth rate

A deterministic run of the model

Huybers, P. Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression. *Quaternary Science Reviews.* 2007.

Discrete model with combined forcing

Huybers, P. Combined obliquity and precession pacing of late Pleistocene deglaciations. *Nature*. 2011.

Huybers, P. and Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. *Nature*. 2005.

Idealized Model

Discrete model:

$$egin{array}{rcl} V_{t_i}&=&V_{t_{i-1}}+\eta_{t_i}\Delta_t & ext{ and if }V_{t_i}\geq T_{t_i} ext{ terminate }\ T_{t_i}&=&at_i+b+c\sin(2\pi t_i)\ \Delta_t&=&t_i-t_{i-1} \end{array}$$

Continuous model: let $\Delta_t \to 0$.

Let $V_{t_0}(t)$ be the volume with initial condition $V_{t_0}(t_0) = 0$.

Numerical Simulations

Numerical Simulations

Another model: Neuron Potentials

$$\frac{dv}{dt} = S_0 v(t^+) = 0 \text{ if } v(t) = T_t T_t = \theta_0 + \lambda \sin(\omega t + \phi)$$

- v : electric potential
- T : firing threshold

J. P. Keener, F. C. Hoppensteadt, and J. Rinzel. Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM Journal on Applied Mathematics, 41:503, 1981.

Reduction to a Periodic Map

Suppose the threshold T is periodic: T(x+1) = T(x).

Let $g: \mathbb{R} \to \mathbb{R}$ be the section map sending a termination time t to the next termination time.

$$g(t) = min\{t' > t : V_t(t') = 0\}$$

Then g is also periodic: g(t+1) = g(t).

Reduction to a Periodic Map

The map g can be smooth, continuous, or discontinuous.

Circle Maps

A function $f : \mathbb{S}^1 \to \mathbb{S}^1$ is a circle map.

Let $\pi:\mathbb{R}\to\mathbb{S}^1$ be defined as

$$\pi(x) = e^{2\pi i x}$$

A lift of a circle map is a map $F : \mathbb{R} \to \mathbb{R}$ such that

$$\pi \circ F = f \circ \pi$$

Circle Maps

- There are infinitely many lifts of any circle map f.
- If f is continuous, any two continuous lifts differ by an integer.
- We say a continuous circle map f is orientation preserving if a lift F has the property F(x) ≤ F(y) if x < y.

Choose a basepoint $x \in \mathbb{S}^1$ and $x' \in \mathbb{R}$ with $\pi(x') = x$. Then for f with lift F define

$$\rho(x, f) = \rho(x', F) = \lim_{n \to \infty} \frac{F^n(x') - x'}{n}$$

Choose a basepoint $x \in \mathbb{S}^1$ and $x' \in \mathbb{R}$ with $\pi(x') = x$. Then for f with lift F define

$$\rho(x,f) = \rho(x',F) = \lim_{n \to \infty} \frac{F^n(x') - x'}{n}$$

"Average" amount of rotation from one iteration of f

Define the rotation set

$$\rho(f) = \{\rho(x, f) : x \in \mathbb{S}^1\}$$

Define the rotation set

$$\rho(f) = \{\rho(x, f) : x \in \mathbb{S}^1\}$$

• If f is a diffeomorphism and orientation-preserving, $\rho(f)$ exists uniquely. (Poincaré)

Define the rotation set

$$\rho(f) = \{\rho(x, f) : x \in \mathbb{S}^1\}$$

- If f is a diffeomorphism and orientation-preserving, $\rho(f)$ exists uniquely. (Poincaré)
- If f is degree one and continuous, $\rho(f)$ is an interval $[\rho_1(f), \rho_2(f)]$. (Ito, 1981)

Average Displacement Set

$$K_n(F) = \frac{F^n - id}{n}(\mathbb{R}) = \frac{F^n - id}{n}([0, 1])$$

$$K(F) = \bigcap_{n \in \mathbb{N}} K_n(F)$$

• For a degree one, continuous circle map f with lift F,

 $p/q \in \rho(f) \iff$ There exists point $x \in \mathbb{R}$ with $F^q(x) = x + p$

• For a degree one, continuous circle map f with lift F,

 $p/q \in \rho(f) \iff$ There exists point $x \in \mathbb{R}$ with $F^q(x) = x + p$

• $K(F) = \rho(F)$

Standard family of circle maps

$$f(x) = x + b + rac{\omega}{2\pi} \sin(2\pi x) \mod 1$$

Standard family of circle maps

What holds true for discontinuous rotations?

What holds true for discontinuous rotations?

- Existence and uniqueness if *f* is orientation preserving. (Brette, 2003; Kozaykin, 2005)
- If there exists point z with $f^q(z) = z$, $p/q \in
 ho(f)$

• $p/q \in \rho(f)$ does not imply the existence of a periodic point: f(x) = (1/2)x + 1/2

• $p/q \in \rho(f)$ does not imply the existence of a periodic point: f(x) = (1/2)x + 1/2

BUT, if p/q ∈ ρ(f), orbits will tend towards a (possibly missing) periodic orbit.

Relations on \mathbb{S}^1

A relation on \mathbb{S}^1 is a subset of $\mathbb{S}^1 \times \mathbb{S}^1$. The analogue of an iteration is an *orbit* of a relation f: $\{...x_{-1}, x_0, x_1, x_2, ...\}$ such that $(x_i, x_{i+1}) \in f$.

Rotation set is:

$$\rho(f) = \rho(F) = \left\{ \lim_{n \to \infty} \frac{x_n - x_0}{n}, (x_0, x_1, x_2, ...) \text{ is an orbit of } F \right\}$$

What holds true for rotation numbers of closed, connected relations?

What holds true for rotation numbers of closed, connected relations?

• Connected relations might not stay connected upon iteration!

What holds true for rotation numbers of closed, connected relations?

• Connected relations might not stay connected upon iteration!

What holds true for rotation numbers of closed, connected relations?

• Connected relations might not stay connected upon iteration!

• The rotation set is not always a closed interval.

- The rotation set is not always a closed interval.
- Consider a relation consisting of two lines: $x + \alpha$, and $1 \alpha x$.

There is one orbit starting at 0 that moves up by 1 every time, with rotation number 1.

All other orbits move at most $1 + \alpha$ after 2 moves, with rotation number in $[\alpha, (1 + \alpha)/2]$.

Can these two types of orbits mix?

Can these two types of orbits mix?

 $m_1 \alpha$

Can these two types of orbits mix?

 $m_1 \alpha$ $n_1 - \alpha(m_1 \alpha)$

Can these two types of orbits mix?

 $m_1 \alpha$ $n_1 - \alpha(m_1 \alpha)$ $n_1 - \alpha(m_1 \alpha) + m_2 \alpha$

Can these two types of orbits mix?

 $m_{1}\alpha$ $n_{1} - \alpha(m_{1}\alpha)$ $n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha$ $n_{2} - \alpha(n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha)$

Can these two types of orbits mix?

 $m_{1}\alpha$ $n_{1} - \alpha(m_{1}\alpha)$ $n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha$ $n_{2} - \alpha(n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha)$ $n_{2} - \alpha(n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha)... = N?$

Can these two types of orbits mix?

 $m_{1}\alpha$ $n_{1} - \alpha(m_{1}\alpha)$ $n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha$ $n_{2} - \alpha(n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha)$ $n_{2} - \alpha(n_{1} - \alpha(m_{1}\alpha) + m_{2}\alpha)... = N?$

This is a polynomial in α with integer coefficients. If α is transcendental, the equation can not be satisfied.

What do we know?

Orientation-preserving \Rightarrow unique rotation number Rational rotation number \Leftrightarrow periodic point

Conjectures

Conjecture: If connectedness is preserved, the rotation set is a closed interval, and $\rho(F) = K(F)$.

• (need to modify Ito's proof that rotation sets are closed)

Conjecture: $\rho(F) = K(F)$

Conjecture: rotation set for backwards (inverse) iterations will be the same.