Periodic Thresholds and Rotations of Relations

Jonathan Hahn

February 2015
$\delta^{18} \mathrm{O}$ content of the last 2 Ma

Huybers' Discrete Model

$$
\begin{aligned}
V_{t} & =V_{t-1}+\eta_{t} \quad \text { and } \text { if } V_{t} \geq T_{t} \text { terminate } \\
T_{t} & =a t+b-c \theta_{t}^{\prime}
\end{aligned}
$$

Upon termination, linearly reset V to 0 over 10 Ka
V : ice volume
T : deglaciation threshold
θ^{\prime} : scaled obliquity
η : ice volume growth rate

A deterministic run of the model

Huybers, P. Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression. Quaternary Science Reviews. 2007.

Discrete model with combined forcing

Huybers, P. Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature. 2011.

Huybers, P. and Wunsch, C. Obliquity pacing of the late Pleistocene glacial terminations. Nature. 2005.

Idealized Model

Discrete model:

$$
\begin{aligned}
V_{t_{i}} & =V_{t_{i-1}}+\eta_{t_{i}} \Delta_{t} \quad \text { and if } V_{t_{i}} \geq T_{t_{i}} \text { terminate } \\
T_{t_{i}} & =a t_{i}+b+c \sin \left(2 \pi t_{i}\right) \\
\Delta_{t} & =t_{i}-t_{i-1}
\end{aligned}
$$

Continuous model: let $\Delta_{t} \rightarrow 0$.
Let $V_{t_{0}}(t)$ be the volume with initial condition $V_{t_{0}}\left(t_{0}\right)=0$.

Numerical Simulations

Numerical Simulations

Another model: Neuron Potentials

$$
\begin{aligned}
\frac{d v}{d t} & =S_{0} \\
v\left(t^{+}\right) & =0 \text { if } v(t)=T_{t} \\
T_{t} & =\theta_{0}+\lambda \sin (\omega t+\phi)
\end{aligned}
$$

v : electric potential
T : firing threshold
J. P. Keener, F. C. Hoppensteadt, and J. Rinzel. Integrate-and-fire models of nerve membrane response to oscillatory input. SIAM Journal on Applied Mathematics, 41:503, 1981.

Reduction to a Periodic Map

Suppose the threshold T is periodic: $T(x+1)=T(x)$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be the section map sending a termination time t to the next termination time.

$$
g(t)=\min \left\{t^{\prime}>t: V_{t}\left(t^{\prime}\right)=0\right\}
$$

Then g is also periodic: $g(t+1)=g(t)$.

Reduction to a Periodic Map

The map g can be smooth, continuous, or discontinuous.

Circle Maps

A function $f: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is a circle map.
Let $\pi: \mathbb{R} \rightarrow \mathbb{S}^{1}$ be defined as

$$
\pi(x)=e^{2 \pi i x}
$$

A lift of a circle map is a map $F: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\pi \circ F=f \circ \pi
$$

Circle Maps

- There are infinitely many lifts of any circle map f.
- If f is continuous, any two continuous lifts differ by an integer.
- We say a continuous circle map f is orientation preserving if a lift F has the property $F(x) \leq F(y)$ if $x<y$.

Rotation Number

Choose a basepoint $x \in \mathbb{S}^{1}$ and $x^{\prime} \in \mathbb{R}$ with $\pi\left(x^{\prime}\right)=x$. Then for f with lift F define

$$
\rho(x, f)=\rho\left(x^{\prime}, F\right)=\lim _{n \rightarrow \infty} \frac{F^{n}\left(x^{\prime}\right)-x^{\prime}}{n}
$$

Rotation Number

Choose a basepoint $x \in \mathbb{S}^{1}$ and $x^{\prime} \in \mathbb{R}$ with $\pi\left(x^{\prime}\right)=x$. Then for f with lift F define

$$
\rho(x, f)=\rho\left(x^{\prime}, F\right)=\lim _{n \rightarrow \infty} \frac{F^{n}\left(x^{\prime}\right)-x^{\prime}}{n}
$$

"Average" amount of rotation from one iteration of f

Rotation Number

Define the rotation set

$$
\rho(f)=\left\{\rho(x, f): x \in \mathbb{S}^{1}\right\}
$$

Rotation Number

Define the rotation set

$$
\rho(f)=\left\{\rho(x, f): x \in \mathbb{S}^{1}\right\}
$$

- If f is a diffeomorphism and orientation-preserving, $\rho(f)$ exists uniquely. (Poincaré)

Rotation Number

Define the rotation set

$$
\rho(f)=\left\{\rho(x, f): x \in \mathbb{S}^{1}\right\}
$$

- If f is a diffeomorphism and orientation-preserving, $\rho(f)$ exists uniquely. (Poincaré)
- If f is degree one and continuous, $\rho(f)$ is an interval $\left[\rho_{1}(f), \rho_{2}(f)\right]$. (Ito, 1981)

Average Displacement Set

$$
K_{n}(F)=\frac{F^{n}-i d}{n}(\mathbb{R})=\frac{F^{n}-i d}{n}([0,1])
$$

$$
K(F)=\bigcap_{n \in \mathbb{N}} K_{n}(F)
$$

Rotation Number

- For a degree one, continuous circle map f with lift F, $p / q \in \rho(f) \Leftrightarrow$ There exists point $x \in \mathbb{R}$ with $F^{q}(x)=x+p$

Rotation Number

- For a degree one, continuous circle map f with lift F, $p / q \in \rho(f) \Leftrightarrow$ There exists point $x \in \mathbb{R}$ with $F^{q}(x)=x+p$
- $K(F)=\rho(F)$

Standard family of circle maps

$$
f(x)=x+b+\frac{\omega}{2 \pi} \sin (2 \pi x) \bmod 1
$$

Standard family of circle maps

Discontinuous Rotations

What holds true for discontinuous rotations?

Discontinuous Rotations

What holds true for discontinuous rotations?

- Existence and uniqueness if f is orientation preserving. (Brette, 2003; Kozaykin, 2005)
- If there exists point z with $f^{q}(z)=z, p / q \in \rho(f)$

Discontinuous Rotations

- $p / q \in \rho(f)$ does not imply the existence of a periodic point: $f(x)=(1 / 2) x+1 / 2$

Discontinuous Rotations

- $p / q \in \rho(f)$ does not imply the existence of a periodic point: $f(x)=(1 / 2) x+1 / 2$

- BUT, if $p / q \in \rho(f)$, orbits will tend towards a (possibly missing) periodic orbit.

Relations on \mathbb{S}^{1}

A relation on \mathbb{S}^{1} is a subset of $\mathbb{S}^{1} \times \mathbb{S}^{1}$.
The analogue of an iteration is an orbit of a relation f : $\left\{\ldots x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\}$ such that $\left(x_{i}, x_{i+1}\right) \in f$.

Rotation set is:

$$
\rho(f)=\rho(F)=\left\{\lim _{n \rightarrow \infty} \frac{x_{n}-x_{0}}{n},\left(x_{0}, x_{1}, x_{2}, \ldots\right) \text { is an orbit of } F\right\}
$$

Closed, Connected Relations

What holds true for rotation numbers of closed, connected relations?

Closed, Connected Relations

What holds true for rotation numbers of closed, connected relations?

- Connected relations might not stay connected upon iteration!

Closed, Connected Relations

What holds true for rotation numbers of closed, connected relations?

- Connected relations might not stay connected upon iteration!

Closed, Connected Relations

What holds true for rotation numbers of closed, connected relations?

- Connected relations might not stay connected upon iteration!

Closed, Connected Relations

- The rotation set is not always a closed interval.

Closed, Connected Relations

- The rotation set is not always a closed interval.
- Consider a relation consisting of two lines: $x+\alpha$, and $1-\alpha x$.

Closed, Connected Relations

There is one orbit starting at 0 that moves up by 1 every time, with rotation number 1 .

All other orbits move at most $1+\alpha$ after 2 moves, with rotation number in $[\alpha,(1+\alpha) / 2]$.

Closed, Connected Relations

Can these two types of orbits mix?

Closed, Connected Relations

Can these two types of orbits mix?
$m_{1} \alpha$

Closed, Connected Relations

Can these two types of orbits mix?

$$
\begin{aligned}
& m_{1} \alpha \\
& n_{1}-\alpha\left(m_{1} \alpha\right)
\end{aligned}
$$

Closed, Connected Relations

Can these two types of orbits mix?

$$
\begin{aligned}
& m_{1} \alpha \\
& n_{1}-\alpha\left(m_{1} \alpha\right) \\
& n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha
\end{aligned}
$$

Closed, Connected Relations

Can these two types of orbits mix?

$$
\begin{aligned}
& m_{1} \alpha \\
& n_{1}-\alpha\left(m_{1} \alpha\right) \\
& n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha \\
& n_{2}-\alpha\left(n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha\right)
\end{aligned}
$$

Closed, Connected Relations

Can these two types of orbits mix?

$$
m_{1} \alpha
$$

$n_{1}-\alpha\left(m_{1} \alpha\right)$
$n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha$
$n_{2}-\alpha\left(n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha\right)$
$n_{2}-\alpha\left(n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha\right) \ldots=N ?$

Closed, Connected Relations

Can these two types of orbits mix?
$m_{1} \alpha$

$$
\begin{aligned}
& n_{1}-\alpha\left(m_{1} \alpha\right) \\
& n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha \\
& n_{2}-\alpha\left(n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha\right) \\
& n_{2}-\alpha\left(n_{1}-\alpha\left(m_{1} \alpha\right)+m_{2} \alpha\right) \ldots=N ?
\end{aligned}
$$

This is a polynomial in α with integer coefficients. If α is transcendental, the equation can not be satisfied.

What do we know?

Orientation-preserving \Rightarrow unique rotation number
Rational rotation number \Leftrightarrow periodic point

Conjectures

Conjecture: If connectedness is preserved, the rotation set is a closed interval, and $\rho(F)=K(F)$.

- (need to modify Ito's proof that rotation sets are closed)

Conjecture: $\rho(F)=K(F)$
Conjecture: rotation set for backwards (inverse) iterations will be the same.

